Polymer microlenses for quantifying cell sheet mechanics.
نویسندگان
چکیده
Mechanical interactions between individual cells and their substrate have been studied extensively over the past decade; however, understanding how these interactions change as cells interact with neighboring cells in the development of a cell sheet, or early stage tissue, is less developed. We use a recently developed experimental technique for quantifying the mechanics of confluent cell sheets. Living cells are cultured on a thin film of polystyrene [PS], which is attached to a patterned substrate of crosslinked poly(dimethyl siloxane) [PDMS] microwells. As cells attach to the substrate and begin to form a sheet, they apply sufficient contractile force to buckle the PS film over individual microwells to form a microlens array. The curvature for each microlens is measured by confocal microscopy and can be related to the strain and stress applied by the cell sheet using simple mechanical analysis for the buckling of thin films. We demonstrate that this technique can provide insight into the important materials properties and length scales that govern cell sheet responses, especially the role of stiffness of the substrate. We show that intercellular forces can lead to significantly different behaviors than the ones observed for individual cells, where focal adhesion is the relevant parameter.
منابع مشابه
Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device.
We report of a method for fabricating two-dimensional, regular arrays of polymer microlenses with focal lengths variable between 0.2 and 4.5 mm. We first make concave microlenses by ink-jetting solvent on a polymer substrate with a commercial drop-on-demand device. Solvent evaporation restructures the surface by a series of combined effects, which are discussed. In the second step we obtain con...
متن کاملPolymer microlenses for collimating light from single-mode silicon oxynitride optical waveguides
We propose a novel technique for microlens fabrication which is compatible with silicon oxynitride technology, and enables the collimation of light exiting the waveguides into beams with divergence angles of 0.52°. Keywords-arrayed microlenses; integrated optics; waveguides
متن کاملA high numerical aperture, polymer-based, planar microlens array.
We present a novel microfabrication approach for obtaining arrays of planar, polymer-based microlenses of high numerical aperture. The proposed microlenses arrays consist of deformable, elastomeric membranes that are supported by polymer-filled microchambers. Each membrane/microchamber assembly is converted into a solid microlens when the supporting UV-curable polymer is pressurized and cured. ...
متن کاملPolarisation-selective hotspots in metallic ring stack arrays.
We demonstrate a simple, scalable fabrication method for producing large-area arrays of vertically stacked metallic micro-rings, embedded in a deformable polymer sheet. Unusual polarisation-dependent hotspots are found to dominate the reflection images. To understand their origin, the arrays are characterized using point-scanning optical spectroscopy and directly compared to numerical simulatio...
متن کاملFast-Response Liquid Crystal Microlens
Electrically tunable liquid crystal microlenses have attracted strong research attention due to their advantages of tunable focusing, voltage actuation, low power consumption, simple fabrication, compact structure, and good stability. They are expected to be essential optical devices with widespread applications. However, the slow response time of nematic liquid crystal (LC) microlenses has bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2010